24 Generalized Binary Continuous Maps GB CMDefinition 241 Let XY? Essay

2.4. Generalized Binary Continuous Maps (G_B CM)

Definition 2.4.1: Let (X,Y,?) be G_B TS and (Z,T_G ) be G_T S. Then the map F:Z?X?Y is called generalized binary continuous (G_B CM) at z?Z if for any G_B OS (A,B)?(X,Y,?) with f(z)?(A,B) then there exists a T_G-open set G in (Z,T_G ) such that z?G and F(G)?(A,B). The map F is called G_B CM if it is G_B C at each z?Z.

Don't use plagiarized sources. Get Your Custom Essay on
24 Generalized Binary Continuous Maps GB CMDefinition 241 Let XY? Essay
From as low as $9/Page
Order Essay

Proposition 2.4.1: Let (X,Y,?) be G_B TS and (Z,T_G ) be G_T S. Let F:Z?X?Y be a mapping. Then F is called G_B CM if F^(-1) (A,B) is T_G-open in (Z,T_G) for every G_B OS (A, B) in (X,Y,?).

Proof: Let F be G_B CM and (A, B) be G_B OS in (X,Y,?).

If F^(-1) (A,B)=?. Then ? is T_G-open set. If F^(-1) (A,B)?? and let z?F^(-1) (A,B). Then F(z)?(A,B). Since F is G_B C at z, there exists a T_G-open set G in (Z,?_g ) such that z?G and F(G)?(A,B). Hence z?G?F^(-1) (A,B). Therefore F^(-1) (A,B) is T_G-open in (Z,T_G ).

Conversely to show that the mapping F:Z?X?Y is G_B C, let z?Z and (A, B) be a G_B OS in (X,Y,?) with F(z)?(A,B). Then z?F^(-1) (A,B), where F^(-1) (A,B) is T_G-open. Also ?F(F?^(-1) (A,B))?(A,B). Hence F is G_B C at z. Therefore F is G_B CM.

Example 2.4.1: LetZ={1,2,3}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{3},{1,2},{2,3},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=(a_1,b_1 )=F(2) and F(3)=(a_2,Y). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1,2}, F^(-1) ({a_2 },{Y})={3}, and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-open in (Z,T_G ). Hence F is G_B CM.

Definition 2.4.2: Let (X,Y,?) be G_B TS. Let (A,B)? ?(X)??(Y). Then (A,B) is called

Generalized binary semi-open ?(G?_B SOS) if (A,B)?Cl_? (I_? (A,B)).

Generalized binary pre-open?(G?_B POS) if (A,B)?I_? (Cl_? (A,B)).

Generalized binary ?-open ?(G?_B ?OS) if (A,B)?I_? (Cl_? (I_? (A,B))).

Generalized binary ?-open ?(G?_B ?OS) if (A,B)?Cl_? (I_? (Cl_? (A,B))).

Generalized binary regular open?(G?_B ROS) if (A,B)=I_? (Cl_? (A,B)).

Definition 2.4.2: Let (Z,T_G ) be G_T S and (X,Y,?) be G_B TS. Then the mapping F:Z?X?Y is called generalized binary semi-continuous (G_B SCM) if F^(-1) (A,B) is T_G-semi-open in (Z,T_G ) for every G_B OS (A, B) in (X,Y,?).

Example 2.4.2: Let Z={1,2,3}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{1},{1,2},{2,3},Z} and?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=(a_1,b_1 ),F(2)=(a_2,b_2 )=F(3). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1}, F^(-1) ({a_1 },{Y})={1}, F^(-1) ({a_2 },{Y})={2,3} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-semi-open in (Z,?_g ). Hence F is G_B SCM.

Proposition 2.4.2: G_B CM ?? G_B SCM

Proof: Let (A,B) be G_B OS in (X,Y,?). Since F is G_B CM, we have F^(-1) (A,B) is T_G-open in (Z,T_G ). We know that every T_G-open set in G_T S is T_G-semi-open. Hence F^(-1) (A,B) is T_G-semi-open in (Z,T_G ). Thus F is G_B SCM.

Remark 2.4.1: The converse of Proposition 2.4.2 is illustrated in Example 2.4.3

Example 2.4.3: Let Z={1,2,3,4}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{3},{3,4},{1,2,4},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y)}. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=(a_1,b_1 ),F(2)=F(3)=F(4)=(a_2,b_2 ). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1}, F^(-1) ({a_1 },{Y})={1}, F^(-1) ({a_2 },{Y})={2,3,4} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-semi-open in (Z,T_G ). Hence F is G_B SCM but not G_B CM because {2,3,4} is T_G-semi-open but not T_G-open in (Z,T_G ).

Proposition 2.4.3: G_B CM ?? G_B ?CM

Proof: Let (A,B) be G_B OS in (X,Y,?). Since F is G_B CM, we have F^(-1) (A,B) is T_G-open in (Z,T_G ). We know that every T_G-open set in G_T S is T_G-?-open. Hence F^(-1) (A,B) is T_G-?-open in (Z,T_G ). Thus F is G_B ?CM.

Remark 2.4.2: The converse of the Proposition 2.4.3 is illustrated in Example 2.4.4.

Example 2.4.4: Let Z={1,2,3,4}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{1,2} {2,3,4},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_1 },{b_2 } ),({a_1 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=(a_1,b_1 )= F(2)=F(3). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1,2,3} , F^(-1) ({a_1 },{b_2 })={?}, F^(-1) ({a_1 },{Y})={1,2,3} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-?-open in (Z,T_G ). Hence F is G_B ?CM but not G_B CM because {1,2,3} is T_G-?-open but not T_G-open in (Z,T_G ).

Proposition 2.4.4:

G_B ?CM ?? G_B SCM

G_B ?CM ?? G_B PCM

G_B RCM ?? G_B CM

Proof: Let (A,B) be G_B OS in (X,Y,?). Since F is G_B ?CM, we have F^(-1) (A,B) is T_G-?-open in (Z,T_G ). We know that every T_G-?-open set in G_T S is T_G-semi-open (T_G-pre-open). Hence F^(-1) (A,B) is T_G-semi-open (T_G-pre-open) in (Z,T_G ). Thus F is G_B SCM (G_B PCM).

Similarly let (A,B) be G_B OS in (X,Y,?).. Suppose F is G_B RCM , we have F^(-1) (A,B) is T_G-r-open in (Z,T_G ). We know that every T_G-r-open set is T_G-open. Hence F^(-1) (A,B) is T_G-open in (Z,T_G ). Thus F is G_B CM, which proves (iii).

Remark 2.4.3: The converse of the Proposition 2.4.4 is illustrated in Example 2.4.5, Example 2.4.6 and Example 2.4.7.

Example 2.4.5: Let Z={1,2,3,4}, X={a_1,a_2 }, Y={b_1,b_2 }. Then T_G={?,{2},{2,3},{3,4},{2,3,4},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_Ton Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=F(2)=(a_1,b_1 ), F(3)=F(4)=(b_1,b_2 ). NowF^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1,2}, F^(-1) ({a_1 },{Y})={1,2}, F^(-1) ({a_2 },{Y})={3,4} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-semi-open in (Z,T_G ). Hence F is G_B SCM but not G_B ?CM because {1,2} is T_G-semi-open but not T_G-?-open in (Z,T_G ).

Example 2.4.6: Let Z={1,2,3,4}, X={a_1,a_2 }, Y={b_1,b_2 }. Then T_G={?,{1,2},{2,3},{3,4},{1,2,3},{2,3,4},Z} and?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=F(3)=F(4)=(a_1,b_1 ),F(2)=(b_1,b_2 ). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1,3,4}, F^(-1) ({a_1 },{Y})={1,3,4}, F^(-1) ({a_2 },{Y})={?} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-pre-open in (Z,T_G ). Hence F is G_B PCM but not G_B ?CM because {1,3,4} is T_G-pre-open but not T_G-?-open in (Z,T_G ).

Example 2.4.7: Let Z={1,2,3,4}, X={a_1,a_2 }, Y={b_1,b_2 }. Then T_G={?,{2},{2,3},{3,4},{2,3,4},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(2)=F(3)=(a_1,b_1 ),F(1)=f(4)=(b_1,b_2 ). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={2,3}, F^(-1) ({a_1 },{Y})={2,3}, F^(-1) ({a_2 },{Y})={?} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-open in (Z,T_G ). Hence F is G_B CM but not G_B RCM because {2,3} is T_G-open but not T_G-regular open in (Z,T_G ).

Remark 2.4.4: G_B SCM ? G_B PCM

This can be illustrated in Example 2.4.8 and Example 2.4.9.

Example 2.4.8: Let Z={1,2,3,4}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{1},{2} {1,2},{1,3},{2,3},{1,2,3},Z}and?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(2)=F(3)=F(4)=(a_2,b_2 ). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={?}, F^(-1) ({a_1 },{Y})={?}, F^(-1) ({a_2 },{Y})={2,3,4} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-semi-open in (Z,T_G ). Hence F is G_B SCM but is not G_B PCM, because {2,3,4} is not T_G-pre-open in (Z,T_G ).

Example 2.4.9: Let Z={1,2,3}, X={a_1,a_2 } and Y={b_1,b_2 }. Then T_G={?,{1,2},{2,3},Z} and ?={(?,?),({a_1 },{b_1 } ),({a_1 },{Y} ),({a_2 },{Y} ),(X,Y) }. Clearly T_G is G_T on Z and ? is G_B T from X to Y. Define F:Z?X?Y by F(1)=(a_1,b_1 )=F(3),F(2)=(?,b_2 ). Now F^(-1) (?,?)=?, F^(-1) ({a_1 },{b_1 })={1,3}, F^(-1) ({a_1 },{Y})={1,3}, F^(-1) ({a_2 },{Y})={?} and F^(-1) (X,Y)=Z. This shows that the inverse image of every G_B OS in (X,Y,?) is T_G-pre-open in (Z,T_G ). Hence F is G_B PCM but is not G_B SCM because {1,3} is not T_G-semi-open in (Z,T_G ).

How to place an order?

Take a few steps to place an order on our site:

  • Fill out the form and state the deadline.
  • Calculate the price of your order and pay for it with your credit card.
  • When the order is placed, we select a suitable writer to complete it based on your requirements.
  • Stay in contact with the writer and discuss vital details of research.
  • Download a preview of the research paper. Satisfied with the outcome? Press “Approve.”

Feel secure when using our service

It's important for every customer to feel safe. Thus, at The Homework Writings, we take care of your security.

Financial security You can safely pay for your order using secure payment systems.
Personal security Any personal information about our customers is private. No other person can get access to it.
Academic security To deliver no-plagiarism samples, we use a specially-designed software to check every finished paper.
Web security This website is protected from illegal breaks. We constantly update our privacy management.

Get assistance with placing your order. Clarify any questions about our services. Contact our support team. They are available 24\7.

Still thinking about where to hire experienced authors and how to boost your grades? Place your order on our website and get help with any paper you need. We’ll meet your expectations.

Order now Get a quote